5,638 research outputs found

    GHASP: an H{\alpha} kinematic survey of spiral and irregular galaxies -- IX. The NIR, stellar and baryonic Tully-Fisher relations

    Full text link
    We studied, for the first time, the near infrared, stellar and baryonic Tully-Fisher relations for a sample of field galaxies taken from an homogeneous Fabry-Perot sample of galaxies (the GHASP survey). The main advantage of GHASP over other samples is that maximum rotational velocities were estimated from 2D velocity fields, avoiding assumptions about the inclination and position angle of the galaxies. By combining these data with 2MASS photometry, optical colors, HI masses and different mass-to-light ratio estimators, we found a slope of 4.48\pm0.38 and 3.64\pm0.28 for the stellar and baryonic Tully-Fisher relation, respectively. We found that these values do not change significantly when different mass-to-light ratios recipes were used. We also point out, for the first time, that rising rotation curves as well as asymmetric rotation curves show a larger dispersion in the Tully-Fisher relation than flat ones or than symmetric ones. Using the baryonic mass and the optical radius of galaxies, we found that the surface baryonic mass density is almost constant for all the galaxies of this sample. In this study we also emphasize the presence of a break in the NIR Tully-Fisher relation at M(H,K)\sim-20 and we confirm that late-type galaxies present higher total-to-baryonic mass ratios than early-type spirals, suggesting that supernova feedback is actually an important issue in late-type spirals. Due to the well defined sample selection criteria and the homogeneity of the data analysis, the Tully-Fisher relation for GHASP galaxies can be used as a reference for the study of this relation in other environments and at higher redshifts.Comment: 16 pages, 6 figures. Accepted for publication in MNRA

    NGC 2782: a merger remnant with young stars in its gaseous tidal tail

    Get PDF
    We have searched for young star-forming regions around the merger remnant NGC 2782. By using GALEX FUV and NUV imaging and HI data we found seven UV sources, located at distances greater than 26 kpc from the center of NGC 2782, and coinciding with its western HI tidal tail. These regions were resolved in several smaller systems when Gemini/GMOS r-band images were used. We compared the observed colors to stellar population synthesis models and we found that these objects have ages of ~1 to 11 Myr and masses ranging from 10^3.9 to 10^4.6 Msun. By using Gemini/GMOS spectroscopic data we confirm memberships and derive high metallicities for three of the young regions in the tail (12+log(O/H)=8.74\pm0.20, 8.81\pm0.20 and 8.78\pm0.20). These metallicities are similar to the value presented by the nuclear region of NGC 2782 and also similar to the value presented for an object located close to the main body of NGC 2782. The high metallicities measured for the star-forming regions in the gaseous tidal tail of NGC 2782 could be explained if they were formed out of highly enriched gas which was once expelled from the center of the merging galaxies when the system collided. An additional possibility is that the tail has been a nursery of a few generations of young stellar systems which ultimately polluted this medium with metals, further enriching the already pre-enriched gas ejected to the tail when the galaxies collided.Comment: 11 pages, 5 figures. Accepted for publication in MNRA

    Numerical precision radiative corrections to the Dalitz plot of baryon semileptonic decays including the spin-momentum correlation of the decaying and emitted baryons

    Full text link
    We calculate the radiative corrections to the angular correlation between the polarization of the decaying and the direction of the emitted spin one-half baryons in the semileptonic decay mode. The final results are presented, first, with the triple integration of the bremsstrahlung photon ready to be performed numerically and, second, in an analytical form. A third presentation of our results in the form of numerical arrays of coefficients to be multiplied by the quadratic products of form factors is discussed. This latter may be the most practical one to use in Monte Carlo simulations. A series of crosschecks is performed. Previous results to order (alpha/pi)(q/M_1) for the decays of unpolarized baryons are reviewed, too, where q is the momentum transfer and M_1 is the mass of the decaying baryon. This paper is self-contained and organized to make it accessible and reliable in the analysis of the Dalitz plot of precision experiments involving heavy quarks and is not compromised to fixing the form factors at predetermined values. It is assumed that the real photons are kinematically discriminated. Otherwise, our results have a general model-independent applicability.Comment: 34 pages, 4 tables, no figures. Some sections have been shortened. Conclusions remain unchange

    Star formation in low density HI gas around the Elliptical Galaxy NGC2865

    Full text link
    Interacting galaxies surrounded by HI tidal debris are ideal sites for the study of young clusters and tidal galaxy formation. The process that triggers star formation in the low-density environments outside galaxies is still an open question. New clusters and galaxies of tidal origin are expected to have high metallicities for their luminosities. Spectroscopy of such objects is, however, at the limit of what can be done with existing 8-10m class telescopes, which has prevented statistical studies of these objects. NGC2865 is an UV-bright merging elliptical galaxy with shells and extended HI tails. The regions observed in this work were previously detected using multi-slit imaging spectroscopy. We obtain new multislit spectroscopy of six young star-forming regions around NGC2865, to determine their redshifts and metallicities. The six emission-line regions are located 16-40 kpc from NGC2865 and they have similar redshifts. They have ages of ~10Myears and an average metallicity of 12+log(O/H) ~ 8.6, suggesting a tidal origin for the regions. It is noted that they coincide with an extended HI tail, which has projected density of NHI_{HI} < 1019^{19} cm2^{-2}, and displays a low surface brightness counterpart. These regions may represent the youngest of the three populations of star clusters already identified in NGC2865. The high, nearly-solar, oxygen abundances found for the six regions in the vicinity of NGC2865 suggest that they were formed by pre-enriched material from the parent galaxy, from gas removed during the last major merger. Given the mass and the location of the HII regions, we can speculate that these young star-forming regions are potential precursors of globular clusters that will be part of the halo of NGC2865 in the future. Our result supports the use of the multi-slit imaging spectroscopy as a useful tool for finding nearly-formed stellar systems around galaxies.Comment: 7 pages, 2 figures accepted in A&

    Tuning the Kondo effect with a mechanically controllable break junction

    Full text link
    We study electron transport through C60 molecules in the Kondo regime using a mechanically controllable break junction. By varying the electrode spacing, we are able to change both the width and height of the Kondo resonance, indicating modification of the Kondo temperature and the relative strength of coupling to the two electrodes. The linear conductance as a function of T/T_K agrees with the scaling function expected for the spin-1/2 Kondo problem. We are also able to tune finite-bias Kondo features which appear at the energy of the first C60 intracage vibrational mode.Comment: 4 pages with 4 figure

    Microorganisms as Biocatalysts and Enzyme Sources

    Get PDF
    Microbial-catalyzed biotransformations have considerable potential for the generation of an enormous variety of structurally diversified organic compounds, especially natural products with complex structures like triterpenoids, flavonoids, steroids, steroidal saponins, and sesquiterpenoids. They offer efficient and economical ways to produce semisynthetic analogues and novel lead molecules. Microorganisms such as bacteria and fungi could catalyze chemo-, regio-, and stereospecific hydroxylations of diverse substrates that are extremely difficult to produce by chemical routes. During recent years, considerable research has been performed on the microbial transformation of bioactive compounds, in order to obtain biologically active molecules with diverse structural features. In green chemistry, biotransformations are an important chemical methodology toward more sustainable industrial processes

    A quick guide for student-driven community genome annotation

    Full text link
    High quality gene models are necessary to expand the molecular and genetic tools available for a target organism, but these are available for only a handful of model organisms that have undergone extensive curation and experimental validation over the course of many years. The majority of gene models present in biological databases today have been identified in draft genome assemblies using automated annotation pipelines that are frequently based on orthologs from distantly related model organisms. Manual curation is time consuming and often requires substantial expertise, but is instrumental in improving gene model structure and identification. Manual annotation may seem to be a daunting and cost-prohibitive task for small research communities but involving undergraduates in community genome annotation consortiums can be mutually beneficial for both education and improved genomic resources. We outline a workflow for efficient manual annotation driven by a team of primarily undergraduate annotators. This model can be scaled to large teams and includes quality control processes through incremental evaluation. Moreover, it gives students an opportunity to increase their understanding of genome biology and to participate in scientific research in collaboration with peers and senior researchers at multiple institutions
    corecore